Friday, October 24, 2008

Solution of Triangle

From Wikipedia, the free encyclopedia

(Redirected from Triangles)
Jump to: navigation, search

A triangle is one of the basic shapes of geometry: a polygon with three corners or vertices and three sides or edges which are line segments. A triangle with vertices A, B, and C is denoted ABC.


Types of triangles

Triangles can be classified according to the relative lengths of their sides:

  • In an equilateral triangle, all sides are of equal length. An equilateral triangle is also an equiangular polygon, i.e. all its internal angles are equal—namely, 60°; it is a regular polygon.[1]
  • In an isosceles triangle, two sides are of equal length (originally and conventionally limited to exactly two).[2] An isosceles triangle also has two equal angles: the angles opposite the two equal sides.
  • In a scalene triangle, all sides have different lengths. The internal angles in a scalene triangle are all different.[3]
Equilateral Triangle Isosceles triangle Scalene triangle
Equilateral Isosceles Scalene

Triangles can also be classified according to their internal angles, described below using degrees of arc:

  • A right triangle (or right-angled triangle, formerly called a rectangled triangle) has one 90° internal angle (a right angle). The side opposite to the right angle is the hypotenuse; it is the longest side in the right triangle. The other two sides are the legs or catheti (singular: cathetus) of the triangle.
  • An oblique triangle has no internal angle equal to 90°.
  • An obtuse triangle is an oblique triangle with one internal angle larger than 90° (an obtuse angle).
  • An acute triangle is an oblique triangle with internal angles all smaller than 90° (three acute angles). An equilateral triangle is an acute triangle, but not all acute triangles are equilateral triangles.
Right triangle Obtuse triangle Acute triangle
Right Obtuse Acute
\underbrace{\qquad \qquad \qquad \qquad \qquad \qquad}_{}
Oblique


Computing the area of a triangle

Calculating the area of a triangle is an elementary problem encountered often in many different situations. The best known and simplest formula is:

S=\frac{1}{2}bh

where S is area, b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term 'base' denotes any side, and 'height' denotes the length of a perpendicular from the point opposite the side onto the side itself.

Although simple, this formula is only useful if the height can be readily found. For example, the surveyor of a triangular field measures the length of each side, and can find the area from his results without having to construct a 'height'. Various methods may be used in practice, depending on what is known about the triangle. The following is a selection of frequently used formulae for the area of a triangle.[4]

[edit] Using vectors

The area of a parallelogram can be calculated using vectors. Let vectors AB and AC point respectively from A to B and from A to C. The area of parallelogram ABDC is then |{AB}\times{AC}|, which is the magnitude of the cross product of vectors AB and AC. |{AB}\times{AC}| is equal to |{h}\times{AC}|, where h represents the altitude h as a vector.

The area of triangle ABC is half of this, or S = \frac{1}{2}|{AB}\times{AC}|.

The area of triangle ABC can also be expressed in terms of dot products as follows:

\frac{1}{2} \sqrt{(\mathbf{AB} \cdot \mathbf{AB})(\mathbf{AC} \cdot \mathbf{AC}) -(\mathbf{AB} \cdot \mathbf{AC})^2} =\frac{1}{2} \sqrt{ |\mathbf{AB}|^2 |\mathbf{AC}|^2 -(\mathbf{AB} \cdot \mathbf{AC})^2} \, .
Applying trigonometry to find the altitude h.
Applying trigonometry to find the altitude h.

[edit] Using trigonometry

The height of a triangle can be found through an application of trigonometry. Using the labelling as in the image on the left, the altitude is h = a sin γ. Substituting this in the formula S = ½bh derived above, the area of the triangle can be expressed as:

S =  \frac{1}{2}ab\sin \gamma = \frac{1}{2}bc\sin \alpha  = \frac{1}{2}ca\sin \beta.

Furthermore, since sin α = sin (π - α) = sin (β + γ), and similarly for the other two angles:

S = \frac{1}{2}ab\sin (\alpha+\beta) = \frac{1}{2}bc\sin (\beta+\gamma) = \frac{1}{2}ca\sin (\gamma+\alpha).

[edit] Using coordinates

If vertex A is located at the origin (0, 0) of a Cartesian coordinate system and the coordinates of the other two vertices are given by B = (xB, yB) and C = (xC, yC), then the area S can be computed as ½ times the absolute value of the determinant

S=\frac{1}{2}\left|\det\begin{pmatrix}x_B & x_C \\ y_B & y_C \end{pmatrix}\right| = \frac{1}{2}|x_B y_C - x_C y_B|.

For three general vertices, the equation is:

S=\frac{1}{2} \left| \det\begin{pmatrix}x_A & x_B & x_C \\  y_A & y_B & y_C \\ 1 & 1 & 1\end{pmatrix} \right| = \frac{1}{2} \big| x_A y_C - x_A y_B + x_B y_A - x_B y_C + x_C y_B - x_C y_A \big|
S= \frac{1}{2} \big| (x_C - x_A) (y_B - y_A) - (x_B - x_A) (y_C - y_A) \big|.

In three dimensions, the area of a general triangle {A = (xA, yA, zA), B = (xB, yB, zB) and C = (xC, yC, zC)} is the Pythagorean sum of the areas of the respective projections on the three principal planes (i.e. x = 0, y = 0 and z = 0):

S=\frac{1}{2} \sqrt{ \left( \det\begin{pmatrix} x_A & x_B & x_C \\ y_A & y_B & y_C \\ 1 & 1 & 1 \end{pmatrix} \right)^2 + \left( \det\begin{pmatrix} y_A & y_B & y_C \\ z_A & z_B & z_C \\ 1 & 1 & 1 \end{pmatrix} \right)^2 + \left( \det\begin{pmatrix} z_A & z_B & z_C \\ x_A & x_B & x_C \\ 1 & 1 & 1 \end{pmatrix} \right)^2 }.

Using Heron's formula

The shape of the triangle is determined by the lengths of the sides alone. Therefore the area S also can be derived from the lengths of the sides. By Heron's formula:

S = \sqrt{s(s-a)(s-b)(s-c)}

where s = ½ (a + b + c) is the semiperimeter, or half of the triangle's perimeter.

Three equivalent ways of writing Heron's formula are

 S = \frac{1}{4} \sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}
 S = \frac{1}{4} \sqrt{2(a^2b^2+a^2c^2+b^2c^2)-(a^4+b^4+c^4)}
 S = \frac{1}{4} \sqrt{(a+b-c) (a-b+c) (-a+b+c) (a+b+c)}.

Computing the sides and angles

In general, there are various accepted methods of calculating the length of a side or the size of an angle. Whilst certain methods may be suited to calculating values of a right-angled triangle, others may be required in more complex situations.

[edit] The sine and cosine rules

Main articles: Law of sines and Law of cosines

The law of sines, or sine rule[5], states that the ratio of the length of a side a to its corresponding angle A is equal to the ratio of the length of a side b to its corresponding angle B.

\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}
A triangle.
A triangle.

The law of cosines, or cosine rule, connects the length of an unknown side of a triangle to the length of the other sides and the angle opposite to the unknown side. As shown in the accompanying diagram, given two known lengths of a triangle a and b, and the angle between the two known sides γ (or the angle opposite to the unknown side c), to calculate the third side c, the following formula can be used:

c^2\ = a^2 + b^2 - 2ab\cos(\gamma)


[edit] Trigonometric ratios in right triangles

A right triangle always includes a 90° (π/2 radians) angle, here labeled C. Angles A and B may vary. Trigonometric functions specify the relationships among side lengths and interior angles of a right triangle.
A right triangle always includes a 90° (π/2 radians) angle, here labeled C. Angles A and B may vary. Trigonometric functions specify the relationships among side lengths and interior angles of a right triangle.

In right triangles, the trigonometric ratios of sine, cosine and tangent can be used to find unknown angles and the lengths of unknown sides. The sides of the triangle are known as follows:

  • The hypotenuse is the side opposite the right angle, or defined as the longest side of a right-angled triangle, in this case h.
  • The opposite side is the side opposite to the angle we are interested in, in this case a.
  • The adjacent side is the side that is in contact with the angle we are interested in and the right angle, hence its name. In this case the adjacent side is b.

[edit] Sine, cosine and tangent

The sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. In our case

\sin A = \frac {\textrm{opposite}} {\textrm{hypotenuse}} = \frac {a} {h}\,.

Note that this ratio does not depend on the particular right triangle chosen, as long as it contains the angle A, since all those triangles are similar.

The cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. In our case

\cos A = \frac {\textrm{adjacent}} {\textrm{hypotenuse}} = \frac {b} {h}\,.

The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side. In our case

\tan A = \frac {\textrm{opposite}} {\textrm{adjacent}} = \frac {a} {b}\,.

The acronym "SOHCAHTOA" is a useful mnemonic for these ratios.

[edit] Inverse functions

The inverse trigonometric functions can also be useful when trying to determine the remaining two angles of a right triangle when you already know the length of the sides of the triangle. Using the inverse sine or arcsine, we can use a simple ratio to calculate an angle from the ratio of two sides:

\theta = \arcsin \left( \frac{\text{opposite}}{\text{hypotenuse}} \right).

Often, the hypotenuse is unknown and would need to be calculated before using arcsin or arccos. Arctan comes in handy in this situation. You can compute the angle of the triangles without knowing the length of the hypotenuse.

\theta = \arctan \left( \frac{\text{opposite}}{\text{adjacent}} \right).
Right triangle

For example, you can calculate the slope of a roof line if you know the rise and run of the roof. If the roof drops 8 feet (a negative rise of 8) as it runs out 20 feet (a positive run of 20), then your roof is angled θ degrees up from horizontal, where θ may be computed as follows:

\begin{align}  \theta &{}= \arctan \left( \frac{\text{opposite}}{\text{adjacent}} \right)          &{}= \arctan \left( \frac{\text{rise}}{\text{run}} \right)          &{}= \arctan \left( \frac{8}{20} \right)          &{}= 21.8^{\circ}. \end{align}

Trigonometry

From Wikipedia, the free encyclopedia

The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end of the arm requires repeated use of the trigonometric functions of those angles.
The Canadarm2 robotic manipulator on the International Space Station is operated by controlling the angles of its joints. Calculating the final position of the astronaut at the end of the arm requires repeated use of the trigonometric functions of those angles.
All of the trigonometric functions of an angle θ can be constructed geometrically in terms of a unit circle centered at O.
All of the trigonometric functions of an angle θ can be constructed geometrically in terms of a unit circle centered at O.

Trigonometry (from Greek trigōnon "triangle" + metron "measure")[1] is a branch of mathematics that deals with triangles, particularly those plane triangles in which one angle has 90 degrees (right triangles). Trigonometry deals with relationships between the sides and the angles of triangles and with the trigonometric functions, which describe those relationships.

Trigonometry has applications in both pure mathematics and in applied mathematics, where it is essential in many branches of science and technology. It is usually taught in secondary schools either as a separate course or as part of a precalculus course. Trigonometry is informally called "trig".

Overview

In this right triangle: sin A = a/c; cos A = b/c; tan A = a/b.
In this right triangle: sin A = a/c; cos A = b/c; tan A = a/b.

If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a right triangle is completely determined, up to similarity, by the angles. This means that once one of the other angles is known, the ratios of the various sides are always the same regardless of the overall size of the triangle. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:

  • The sine function (sin), defined as the ratio of the side opposite the angle to the hypotenuse.
\sin A=\frac{\textrm{opposite}}{\textrm{hypotenuse}}=\frac{a}{\,c\,}\,.
  • The cosine function (cos), defined as the ratio of the adjacent leg to the hypotenuse.
\cos A=\frac{\textrm{adjacent}}{\textrm{hypotenuse}}=\frac{b}{\,c\,}\,.
  • The tangent function (tan), defined as the ratio of the opposite leg to the adjacent leg.
\tan A=\frac{\textrm{opposite}}{\textrm{adjacent}}=\frac{a}{\,b\,}=\frac{\sin A}{\cos A}\,.

Common formulae

Certain equations involving trigonometric functions are true for all angles and are known as trigonometric identities. Many express important geometric relationships. For example, the Pythagorean identities are an expression of the Pythagorean Theorem. Here are some of the more commonly used identities, as well as the most important formulae connecting angles and sides of an arbitrary triangle. For more identities see trigonometric identity.

[edit] Trigonometric identities


[edit] Pythagorean identities

\begin{align} \sin^2 \alpha + \cos^2 \alpha = 1 \\ \tan^2 \alpha + 1 = \sec^2 \alpha \\ 1+\cot^2 \alpha = \csc^2 \alpha \end{align}

[edit] Sum and product identities

[edit] Sum to product
\begin{align} \sin \alpha \pm \sin \beta &= 2\sin \left( \frac{\alpha \pm \beta}{2}\right)\cos \left(\frac{\alpha \mp \beta}{2} \right)\\ \cos \alpha + \cos \beta &= 2\cos \left(\frac{\alpha + \beta}{2} \right)\cos  \left(\frac{\alpha - \beta}{2}\right)\\ \cos \alpha - \cos \beta &= -2\sin \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2}\right)\\ &= 2\sin \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\beta - \alpha}{2}\right)      \end{align}

[edit] Product to sum[3]
\begin{align} \cos \alpha \,\cos \beta &= \frac{1}{2}[\cos(\alpha - \beta) + \cos (\alpha + \beta)]\\ \sin \alpha \,\sin \beta &= \frac{1}{2}[\cos(\alpha - \beta) - \cos (\alpha + \beta)]\\ \cos \alpha \,\sin \beta &= \frac{1}{2}[\sin(\alpha + \beta) - \sin (\alpha - \beta)]\\ \sin \alpha \,\cos \beta &= \frac{1}{2}[\sin(\alpha + \beta) + \sin (\alpha - \beta)] \end{align}

[edit] Sine, cosine, and tangent of a sum

Detailed, diagramed proofs of the first two of these formulas are available
for download as a four-page PDF document at Image:Sine Cos Proofs.pdf.

\begin{align} \sin(\alpha \pm \beta) &= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\ \cos(\alpha \pm \beta) &= \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\ \tan(\alpha \pm \beta) &= \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \end{align}

[edit] Half-angle identities

Note that \pm is correct, it means it may be either one, depending on the value of A/2.

\begin{align} \sin \frac{A}{2} &= \pm \sqrt{\frac{1-\cos A}{2}} \\ \cos \frac{A}{2} &= \pm \sqrt{\frac{1+\cos A}{2}} \\\tan \frac{A}{2} &= \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \end{align}

[edit] Stereographic (or parametric) identities

\begin{align} \sin \alpha &= \frac{2T}{1+T^2} \\ \cos \alpha &= \frac{1-T^2}{1+T^2}\\ \end{align}

where T=\tan \frac{\alpha}{2}.

[edit] Triangle identities

Laws of Sines and Cosines
Laws of Sines and Cosines\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \cos C=\frac{a^2+b^2-c^2}{2ab}

In the following identities, A, B and C are the angles of a triangle and a, b and c are the lengths of sides of the triangle opposite the respective angles.

[edit] Law of sines

The law of sines (also know as the "sine rule") for an arbitrary triangle states:

\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,

where R is the radius of the circumcircle of the triangle.

[edit] Law of cosines

The law of cosines (also known as the cosine formula, or the "cos rule") is an extension of the Pythagorean theorem to arbitrary triangles:

c^2=a^2+b^2-2ab\cos C ,\,

or equivalently:

\cos C=\frac{a^2+b^2-c^2}{2ab}.\,

[edit] Law of tangents

The law of tangents:

\frac{a+b}{a-b}=\frac{\tan\left[\tfrac{1}{2}(A+B)\right]}{\tan\left[\tfrac{1}{2}(A-B)\right]}