REAL NUMBER SYSTEM
Definition
Construction from the rational numbers
The real numbers can be constructed as a completion of the rational numbers in such a way that a sequence defined by a decimal or binary expansion like {3, 3.1, 3.14, 3.141, 3.1415,...} converges to a unique real number. For details and other constructions of real numbers, see construction of the real numbers.
Axiomatic approach
Let R denote the set of all real numbers. Then:
- The set R is a field, meaning that addition and multiplication are defined and have the usual properties.
- The field R is ordered, meaning that there is a total order ≥ such that, for all real numbers x, y and z:
- if x ≥ y then x + z ≥ y + z;
- if x ≥ 0 and y ≥ 0 then xy ≥ 0.
- The order is Dedekind-complete; that is, every non-empty subset S of R with an upper bound in R has a least upper bound (also called supremum) in R.
The last property is what differentiates the reals from the rationals. For example, the set of rationals with square less than 2 has a rational upper bound (e.g., 1.5) but no rational least upper bound, because the square root of 2 is not rational.
The real numbers are uniquely specified by the above properties. More precisely, given any two Dedekind-complete ordered fields R1 and R2, there exists a unique field isomorphism from R1 to R2, allowing us to think of them as essentially the same mathematical object.
Properties
Completeness
The main reason for introducing the reals is that the reals contain all limits. More technically, the reals are complete (in the sense of metric spaces or uniform spaces, which is a different sense than the Dedekind completeness of the order in the previous section). This means the following:
A sequence (xn) of real numbers is called a Cauchy sequence if for any ε > 0 there exists an integer N (possibly depending on ε) such that the distance |xn − xm| is less than ε for all n and m that are both greater than N. In other words, a sequence is a Cauchy sequence if its elements xn eventually come and remain arbitrarily close to each other.
A sequence (xn) converges to the limit x if for any ε > 0 there exists an integer N (possibly depending on ε) such that the distance |xn − x| is less than ε provided that n is greater than N. In other words, a sequence has limit x if its elements eventually come and remain arbitrarily close to x.
It is easy to see that every convergent sequence is a Cauchy sequence. An important fact about the real numbers is that the converse is also true:
- Every Cauchy sequence of real numbers is convergent.
That is, the reals are complete.
Note that the rationals are not complete. For example, the sequence (1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) is Cauchy but it does not converge to a rational number. (In the real numbers, in contrast, it converges to the square root of 2.)
The existence of limits of Cauchy sequences is what makes calculus work and is of great practical use. The standard numerical test to determine if a sequence has a limit is to test if it is a Cauchy sequence, as the limit is typically not known in advance.
For example, the standard series of the exponential function
converges to a real number because for every x the sums
can be made arbitrarily small by choosing N sufficiently large. This proves that the sequence is Cauchy, so we know that the sequence converges even if the limit is not known in advance.
No comments:
Post a Comment